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The metric of the SO(3) group of rotations can be used to define the angular

resolution of a function of rotations. The resolution is related to the degree of

the highest representation present in the expansion of the function in terms of

Wigner functions. The peculiar non-Euclidean metric of the rotation domain,

however, implies that the terms which effectively contribute to the expansion

vary through two-dimensional sections of the rotation domain and are within

limiting resolution circles in two-dimensional reciprocal sections. This reconciles

an economic sampling of the expansion with the acceleration provided by fast

Fourier transform (FFT) techniques.

1. Introduction

The group of rotations SOð3Þ is frequently the domain of

definition of functions. Since rotations can be parametrized

using triples of real numbers, the abstract SOð3Þ domain is

often represented as a subset of R3. Though the metric of

SOð3Þ is not equivalent to the standard Euclidean metric of R3

(Chevalley, 1946), an adequate parametrization of the rota-

tions permits the SOð3Þ domain to be partitioned into two-

dimensional sections, in each one of which the rotation metric

reduces to a Euclidean one (Burdina, 1971; Lattman, 1972).

The matrix elements of the irreducible representations of

SOð3Þ, also known as Wigner functions, constitute a complete

set of functions defined on SOð3Þ (Wigner, 1959); real or

complex functions of rotations can therefore be expanded in

this basis. Also, by using the Euler parametrization of rota-

tions, the Wigner expansion reduces to a Fourier series

allowing faster calculations of the functions [see Trapani &

Navaza (2006) and references therein]. In practical cases, the

Wigner series includes matrices of representations up to a

degree ‘max related to a certain angular resolution of the

expanded function.

In Fourier theory, the concept of resolution of a function

defined on a Euclidean space is related to the maximum length

of the corresponding reciprocal-space vectors. In this work, we

have applied the same idea to functions defined on the

Euclidean two-dimensional sections of the SOð3Þ domain. We

will show that ‘max naturally defines a limiting circle – the

angular resolution – in the corresponding two-dimensional

reciprocal sections, outside which the Fourier coefficients are

practically negligible. As a consequence, the set of Wigner

functions up to a given degree ‘max are not all necessary in

order to faithfully represent a function of rotations at the

corresponding angular resolution. This implies that any

function of rotations may be evaluated on a more economic

distortion-free sampling grid that satisfies the fast Fourier

transform (FFT) prescriptions. This approach has been

applied to the calculation of the self-rotation function of the

IBDV VP2 subviral particle.

2. Background

In this section, we briefly recall some notions and results

regarding the rotation group, its metric and the complete set of

Wigner functions defined on the group.

A rotation R is an isometric transformation of the three-

dimensional Euclidean space characterized by an invariant

axis (the rotation axis) and a spin angle around the rotation

axis. The set of all rotations having a common invariant point

(the intersection of their rotation axes) constitutes an infinite

group, SOð3Þ, isomorphic to the group of the 3 by 3 orthogonal

matrices.

The notion of distance between rotations can be introduced

in the rotation group. It can be demonstrated that the quantity

ds2 ¼ traceðdRdRþÞ ¼
P3

i;j¼1

ðdRijÞ
2 ð1Þ

defines a metric on SOð3Þ, unique up to a multiplicative

constant, which cannot be reduced to a Euclidean metric

(Chevalley, 1946). This is a topological property of the group,

independent of its parametrization. The length element ds,

which corresponds to a rotation spin angle, is interpreted as

the distance between the rotations R and Rþ dR.

There exists a countably infinite number of irreducible

matrix representations of SOð3Þ. The matrix associated with a

rotation R in the representation of degree ‘ has elements

fD‘
m;m0 ðRÞg; �‘ � m; m0 � ‘:

‘ takes integer values from 0 to1. Altogether, they constitute

a complete set of orthogonal complex-valued functions

defined on SOð3Þ. Therefore, any well behaved function R,

R : SOð3Þ ! C;



can be expressed as a series of D‘
m;m0,

RðRÞ ¼
P‘max

‘¼0

P‘
m;m0¼�‘

C‘
m;m0D

‘
m;m0 ðRÞ; ð2Þ

where the C‘
m;m0 are the expansion coefficients. The summation

limit ‘max, which should be1 in theory, is set to a convenient

finite number in all practical cases. In the following, we will

call ‘Wigner expansion’ the expansion in equation (2).

A rotation can be represented using a triple of real

numbers. Several parametrizations can be established, each

one of which leads to a different mapping of some subset of R3

onto the SOð3Þ group. The Wigner expansion can be con-

veniently expressed in terms of Euler angles, while the SOð3Þ

metric is more faithfully represented using the Burdina–

Lattman parametrization, as described below.

2.1. The Wigner expansion using Euler angles

According to Euler, a rotation R can be specified by three

angles ð�; �; �Þ associated with an orthonormal frame

fX;Y;Zg. We will follow the convention by which ð�; �; �Þ
denotes a rotation of � about the Z axis, followed by a rotation

of � about the rotated Y axis, and finally a rotation of � about

the rotated Z axis. In this way, a mapping from the

parallelepiped

f0 � �< 2�g � f0 � � � �g � f0 � � < 2�g � R3

onto the SOð3Þ group is established. This correspondence,

though complete, is not exactly one-to-one. In fact, different

values of � and � may correspond to the same rotation when

� ¼ 0 or �:

Rð�; 0; �Þ ¼ Rð�þ �; 0; 0Þ

Rð�; �; �Þ ¼ Rð�� �; �; 0Þ:

It is sometimes convenient to extend the Euler domain to the

entire R3. In this case, the correspondence between Euler

angles and rotations is 2�-periodic in �, � and � and possesses

a diagonal glide plane of symmetry which results from the

equivalence

Rð�; �; �Þ ¼ Rð�þ �;��; � þ �Þ:

The rotation length element [equation (1)] in the Euler

domain becomes

ds2 ¼ d�2 þ 2 cosð�Þd�d� þ d�2 þ d�2: ð3Þ

The Wigner functions take a simple form in Euler coordinates:

D‘
m;m0 ð�; �; �Þ ¼ d‘m;m0 ð�Þ exp½iðm�þm0�Þ�; ð4Þ

where the d‘m;m0 ð�Þ, known as the reduced Wigner functions,

are real trigonometric polynomials that can be represented by

a Fourier summation with maximum oscillation frequency

‘=2�.

According to equation (4), the Wigner expansion [equation

(2)] can be reduced, for each � section, to a simple Fourier

expansion in � and �:

Rð�; �; �Þ ¼
P‘max

m;m0¼�‘max

Sm;m0 ð�Þ exp½iðm�þm0�Þ�; ð5Þ

where the two-dimensional Fourier coefficients Sm;m0 ð�Þ are

given by

Sm;m0 ð�Þ ¼
P‘max

‘¼maxðjmj;jm0 jÞ

C‘
m;m0d

‘
m;m0 ð�Þ: ð6Þ

Functions of rotations are frequently evaluated using equation

(5) as it allows the rapid sampling of � sections by means of

FFT algorithms (Crowther, 1972). When the d‘m;m0 ð�Þ are

represented by a Fourier summation then the whole three-

dimensional angular domain can be assessed by FFT (Kovacs

& Wriggers, 2002).

2.2. The SO(3) metric expressed in terms of the Burdina–
Lattman parameters

Although the SOð3Þ metric cannot be reduced to a

Euclidean one in three dimensions, it is possible to do so for

two-dimensional sections (Burdina, 1971; Lattman, 1972).

Indeed, for fixed �, the transformations

��

�þ

� �
¼ 1=2

1 �1

1 1

� �
�

�

� �
ð7Þ

!�

!þ

� �
¼

2 sinð�=2Þ 0

0 2 cosð�=2Þ

� �
��

�þ

� �
ð8Þ

reduce equation (3) to
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Figure 1
Two-dimensional plot of the angular distance from a reference rotation
ð!0
�; �; !

0
þÞ plotted as a function of the coordinates ð!�; !þÞ at constant

� ¼ �=3. The angular distance values are represented using gray colour
levels and equispaced contours. These differ from ‘Euclidean’ circumfer-
ences only at long distances from the reference point ð!0

�; !
0
þÞ. Notice the

periodic structure corresponding to a centred rectangular lattice with
unit-cell lengths f4� sinð�=2Þ; 4� cosð�=2Þg. The plotted function is
independent of the choice of ð!0

�; !
0
þÞ. Similar plots, with different

unit-cell parameters, are obtained for different � sections.



ds2
¼ d!2

� þ d!2
þ: ð9Þ

Equation (7) orthogonalizes the Euler ð�; �Þ angles, while the

resulting �� coordinates are normalized by equation (8). The

!� parametrization permits a distortion-free graphical

representation of SOð3Þ � sections (see Fig. 1). A set of points

regularly spaced in these variables will correspond to regular

distances between points. The !� parametrization has the

periodicity of a two-dimensional centred rectangular lattice

with unit-cell parameters f4� sinð�=2Þ; 4� cosð�=2Þg. Notice

that these are �-dependent and that for � equal to 0 or � the

sections reduce to lines.

3. The concept of resolution in SO(3)

The concept of resolution of a function is related to the

maximal frequency present in its Fourier spectrum. In crys-

tallography, the resolution is commonly expressed as the

inverse of the maximum reciprocal-vector length. In direct

space, this corresponds approximately to the smallest possible

distance between two points of oscillation of the function. This

relationship results from interpreting the argument of the

complex exponential in the Fourier expansion as a scalar

product. It is therefore meaningful only if the direct-space

metric is Euclidean with respect to the coordinates used in the

Fourier expansion.

In the domain of rotations, the notion of ‘angular resolu-

tion’ of a function can be associated with the upper limit ‘max

in its Wigner expansion [equation (2)]. It is related to the

maximum Fourier frequency of the expansion, which is

‘max=2� for each one of the three Euler variables [equation

(4)]. These Fourier frequencies cannot be directly related, in

the way described above, to an angular distance in SOð3Þ.

Nevertheless, they can in two-dimensional � sections, where

the SOð3Þ metric is equivalent to a Euclidean one.

In the following, we will apply the concepts of distance and

resolution to direct and reciprocal � sections of the SOð3Þ

domain. We will show that standard FFT requirements for a

uniform sampling [in terms of the SOð3Þ distance given by

equation (1)] imply that some terms in a Wigner expansion

must have vanishingly small contributions.

3.1. Direct and reciprocal vectors in b sections

The argument of the exponential in a two-dimensional

Wigner expansion [equation (5)] may be interpreted as a

scalar product between two vectors. One of them is associated

with the rotation of fixed � angle, with components ð�; �Þ in a

non-orthonormal basis [because of equation (3)], the direct

basis. The other one has components ðm;m0Þ in another non-

orthonormal basis, the reciprocal basis. After orthogonalizing

by equation (7) and defining

m� ¼ m�m0; ð10Þ

we obtain, for the argument of the imaginary exponential,

m�þm0� ¼ m��� þmþ�þ: ð11Þ

The rotation now has components ð��; �þÞ in an orthogonal

basis with parameters f2 sinð�=2Þ; 2 cosð�=2Þg, and the recip-

rocal vector has components ðm�;mþÞ, analogous to Miller

indexes, in the associated orthogonal reciprocal basis. As the

sum of the m� indexes is always even, the reciprocal vectors

correspond to a rectangular centred lattice. This implies that

only half of the direct cell is an independent domain. It can be

chosen as

0 � �� � �

0 � �þ � 2�

or the equivalent one obtained by interchanging �� and �þ.

The length of the reciprocal vector of coordinates ðm�;mþÞ is

now given by

m�
2 sinð�=2Þ

� �2

þ
mþ

2 cosð�=2Þ

� �2
" #1=2

: ð12Þ

Notice that, for m� (or mþ) 6¼ 0, the reciprocal vector length

tends to infinity as �! 0 (or �).

3.2. FFT-based versus metric based sampling

The sampling of � sections of the Wigner expansion of a

function R is dictated by the standard FFT requirements: the

number N of sampling points along a coordinate and the

highest index M of the Fourier coefficients that represent R

along the same coordinate must satisfy (see Brillouin, 1956)

N � 2M þ 1: ð13Þ

This inequality may be used in two different ways. If the

maximum index M of the Fourier series is known then we can

determine the minimum number of equidistant sampling

points needed to recover R from the samples. Conversely, if

we know that the function can be recovered from N samples,

then we know that the maximum index of the Fourier series

that represents R cannot be greater than ðN � 1Þ=2.

According to equation (5), the indices m and m0 take values in

the interval

�‘max � m;m0 � ‘max ð14Þ
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Figure 2
Plot of one � section of the Sm;m0 ð�Þ self-rotation coefficients for the
IBDV VP2 subviral particle.



independently of �. The number of sampling points in � and �
(N� and N� , respectively) must therefore satisfy

N� � 2‘max þ 1

N� � 2‘max þ 1:
ð15Þ

On the other hand, in terms of ��, any � section has period 2�
and has Fourier coefficients with indexes m� in the interval

�2‘max � m� � 2‘max ð16Þ

so that the number of sampling points in �� must satisfy

N��
� 4‘max þ 1: ð17Þ

Let us now use the metric ds2 in order to define a set of

sampling points for R, which we choose as a Cartesian grid of

approximately equally spaced !� points. The number of

sampling points along !� is defined in terms of a distance �, in

radians, as

N�ð�Þ ¼ ½sinð�=2Þ4�=��

Nþð�Þ ¼ ½cosð�=2Þ4�=��;
ð18Þ

where ½x� denotes the smallest positive integer greater than x,

from which the actual spacings

��ð�Þ ¼ sinð�=2Þ4�=N�ð�Þ

�þð�Þ ¼ cosð�=2Þ4�=Nþð�Þ
ð19Þ

are determined. The spacings ��ð�Þ and �þð�Þ usually differ

but remain close to the original distance �. For the sampling

based on the distance between rotations, the left-hand

member of equation (13) varies monotonically between 4�=�
and unity [see equation (18)], while the right-hand member is

always 4‘max þ 1 [see equation (17)] irrespective of the �
section. Thus, either R is not faithfully represented by our

samples or the coefficients Sm;m0 ð�Þ go to zero for indices that

do not satisfy the sampling criterion. We have investigated this

problem numerically.

3.3. The limiting resolution circles

The crystallographic self-rotation function (Crowther, 1972;

Navaza, 1993) of the IBDV VP2 subviral particle (Coulibaly et

al., 2005) has been calculated using data up to 5 Å resolution

and an integration radius of 130 Å, resulting in ‘max ¼ 154.

The amplitudes of the Sm;m0 ð�Þ coefficients for � ¼ �=3 are

plotted in Fig. 2. In the plot, the reciprocal � section and both

the fm;m0g and fm�;mþg systems of coordinates are drawn in

order to faithfully represent distances in reciprocal space. The

reciprocal basis vectors

u� 	 ðm� ¼ 1;mþ ¼ 0Þ

uþ 	 ðm� ¼ 0;mþ ¼ 1Þ

are therefore represented as orthogonal arrows with relative

lengths ½2 sinð�=2Þ��1 and ½2 cosð�=2Þ��1, respectively. In Fig. 3,

the Sm;m0 ð�Þ amplitudes are plotted versus the reciprocal

vector length for different � sections.

All the non-null Sm;m0 coefficients were found inside

approximately circular regions – which we will call the limiting

resolution circles – that do not fill completely the reciprocal �
sections. The radius of these circles represents the maximum

allowed reciprocal vector length. As expected, this value is

constant throughout the different � sections (see Fig. 3). An

estimation of the radius can be made by considering the

section � ¼ 0, where the rotation function is independent of

�� and, as a consequence, the corresponding Fourier

frequencies with index m� 6¼ 0 must be null [this can also be

derived from equation (6) using the identity d‘m;m0 ð0Þ ¼ �m;m0 ].

In that section, only the ð0;mþÞ reciprocal line can contribute

to the rotation function, and the longest vectors on this line

have moduli equal to

2‘max=½2 cosð0Þ� ¼ ‘max:

The same conclusion can be drawn by considering the section

� ¼ � and the line ðm�; 0Þ. For a general � section, therefore,

the Sm;m0 ð�Þ coefficients are expected to effectively contribute

to the rotation function only if
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Figure 3
Plot of the IBDV VP2 Sm;m0 ð�Þ amplitudes versus the distance from the
reciprocal-space origin.

Figure 4
Plot of the Fm;m0 coefficients versus the distance from the reciprocal-space
origin.



m�
2 sinð�=2Þ

� �2

þ
mþ

2 cosð�=2Þ

� �2

� ‘2
max: ð20Þ

Notice that, when the indices ðm;m0Þ or ðm�;mþÞ are plotted

on a regular orthogonal grid, the limiting circle becomes an

ellipse if � 6¼ �=2 and tends to a segment as �! 0 or �.

The existence of a limiting resolution circle of radius ‘max is

a built-in feature of the reduced Wigner functions themselves,

independently of any experimental data [i.e. the C‘
m;m0 coeffi-

cients in equation (6)]. Indeed, the quantity

Fm;m0 ¼
P‘max

‘¼maxðjmj;jm0jÞ

jd‘m;m0 ð�Þj ð21Þ

decays rapidly to zero beyond the above radius (Fig. 4).

4. Computing Wigner expansions

In crystallography, the maximum Miller index in any direction

is obtained by dividing the corresponding cell parameter by

the resolution of the Fourier coefficients. In the two-dimen-

sional angular domain, we have seen that the length of the

longest reciprocal vector included in the Wigner expansion,

i.e. the inverse of the resolution, is ‘max, so that the highest

indices are

M�ð�Þ ¼ 2 sinð�=2Þ‘max

Mþð�Þ ¼ 2 cosð�=2Þ‘max

ð22Þ

and the minimum numbers of sampling points, N�ð�Þ, are

given by equation (13). Taking into account that only half of

the rectangular centred cell has to be considered, the number

of sampling points per section is

N�ð�ÞNþð�Þ=2 
 ð2‘maxÞ
2 sinð�Þ: ð23Þ

On the other hand, the number of sampling points corre-

sponding to the classical prescription is [see equation (15)]

N�N� 
 ð2‘maxÞ
2

ð24Þ

for any � section. Thus, there are sinð�Þ times fewer points

with the sampling based on the indices (22).

In summary, the results of the preceding section allow us to

sample � sections of any function of rotations at fewer points

while computing it by FFT techniques, and recover distortion-

free sections, which facilitates peak-searching procedures.

In Fig. 5, we show two plots of the same section

(� ¼ 137:8�) of the IBDV VP2 self-rotation function

computed by FFT using, respectively, the classical sampling

(96100 points) and the metric based sampling (64736 points).

The ð�; �Þ points are represented on an oblique grid in order

to permit a direct comparison with the metric based plot. As

expected, the two plots display the same features.

5. Conclusions

The angular resolution of a function R defined on the group

SOð3Þ of three-dimensional rotations, if correctly expressed in

terms of the SOð3Þ metric as a rotational distance � (in

radians), corresponds to an upper limit ‘max ¼ �=� of the

Wigner expansion of the function R. The peculiar non-

Euclidean metric of the rotation domain, however, implies

that not all the terms of degree less than ‘max contribute to the

Wigner expansion. Those which effectively contribute vary

through two-dimensional sections of the rotation domain and

are determined by limiting resolution circles in the two-

dimensional reciprocal sections. As a consequence, � sections

of any function of rotations may be evaluated by means of

FFT techniques on equally spaced distortion-free grids. This

reconciles the acceleration of the fast rotation function

(Crowther, 1972) with the metric based sampling (Burdina,

1971; Lattman, 1972).
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Figure 5
Plot of the � ¼ 137:8� section of the self-rotation function corresponding
to the IBDV VP2 subviral particle, evaluated by FFT techniques. (a)
Metric based sampling; (b) classical sampling. A detail of the two plots is
also shown. The extra periodicity along � is due to a crystal sixfold axis
parallel to the Z axis.


